

Welcome!

Webinar #9: METHODS & METHODOLOGIES 16 August 2017

Agenda:

- * Introduction Method & Methodology Fundamental Differences
- * Examples illustrating the differences in Method used.
- * Examples illustrating other fundamental differences arising from Method used
- * Methodology type 1, type 2, type 3 meaning, examples etc.
- * Methodology in STPro
- * Q & A Session (pls. send Q's anytime during the presentation to both the presenter & host)

Thermoflow Training and Support

- Standard Training
- On site training course
- Advanced Workshop
- Webinars when new version is released
- Help, Tutorials, PPT, Videos
- Technical Support

→ Feature Awareness Webinars

Feature Awareness Webinars

- 1- Assemblies in Thermoflex
- 2- Scripts in Thermoflow programs
- 3- Multi Point Design
- **4-** Reciprocating Engines
- 5- Simplified Annual & TIME
- 6- Matching ST Performance
- 7- Modelling Solar Systems
- 8- Combining Thermoflex & Application Specific
- 9- Methods and Methodology explained

Introduction – Method & Methodology in GTPRO

- Both Methods & Methodology feature at the early stage of model definiton.
- Each serve a completely different purpose.

Method : influences the method used for the HRSG design (either by the Simplified, the Automatic or the User Defined Method)

Note that since there is no HRSG in a Rankine plant, Method does not feature in Steam Pro.

Methodology : allows the user to choose how the program applies effects of hardware determined from the initial calculation into subsequent calculation runs (either in GTPro or GTM)

©Thermoflow Inc. 2017 – Webinar: Methods and Methodologies, August 16, 2017, STAN. KAVALE

Differences in Representation – 2P HRSG, Condensing ST

Visual Method

Thermoflow

Calculation Options > Automatic or User Defined only

File	View	Options	Window	Excel Link	Compare Files	Scripts	Custom Variable List	F
Navig	jator		Sit	e Ì	Calculation Options		Main Steam Piping Losses	I
	lew Ses	sion	_Method-					-
	Start De:	sign	C Simpli	fied				
Р	lant Cri	teria	 Auton 	natic				
	GT Selec	tion	O User-o	defined				
	GT Inpu	uts	- Simplified I	Method - Hei	at Evohanger Local	ion and T	emperature Selections	
	ST-HRS	GG 🔤	High press	ure economis	er #1 settings		emperature delections	
H	HRSG In	puts	HPE1 Exi	t Temperature	e = IP Saturation Te	mperature	•	
	Water Cir	cuits	Intermedia	te pressure su	uperheater settings			
H	HRSG La	iyout	IPS behin	id HP econom	nizer		-	
C	ooling Sy	ystem		ure superheat	er settings			
	ST Inpu	uts	LPS upstr	ream of IPB			-	
	Environm	nent	ļ,				_	
(Other PE.	ACE						
	Econom	nics						
	Gasifical	tion	C Script					
	Desalina	tion	Maximum	number of scr	ipt loops 30			
	Compu	ite						

Classic Method Calculation Options > Simplified Method Available

lavigator 📃	Site Calculation Main Steam Piping
New Session	UptionsLosses
Start Design	Simplified
Plant Criteria	C Automatic
GT Selection	C User-defined
GT Inputs	
ST-HRSG	High pressure economiser #1 settings
HRSG Inputs	HPE1 Exit Temperature = IP Saturation Temperature
Water Circuits	Intermediate pressure superheater settings
HRSG Layout	IPS parallel to HP economizer
Cooling System	
ST Inputs	LPS upstream of IPB
Environment	
Other PEACE	
Economics	
Gasification	_ Script
Desalination	Maximum number of script loops 30
Compute	

©Thermoflow Inc. 2017 – Webinar: Methods and Methodologies, August 16, 2017, STAN. KAVALE

Example 1

- Consider a 2 PL HRSG being supplied with exhaust gas source, 760 t/hr @ 620 deg C
- HRSG Design Method = Simplified
- ST-HRSG conditions as shown, HP & IP Pinch @ 15degC, approach temp @ 4 degC

Example 1– GTPro Result/ HPE1 exit temperature = IP Saturation temperature

Thermoflow Example 2– GTPro Result/HPE1 exit temperature = IP saturation temperature - subcooling

Example 2

- Consider a 1 PL HRSG being supplied with exhaust gas source, 760 t/hr @ 620 deg C
- HRSG Design Method = Simplified/Automatic what are the differences in terms of GTPro Output, PEACE results etc.
- ST-HRSG conditions as shown, HP & IP Pinch @ 15degC, approach temp @ 4 degC

©Thermoflow Inc. 2017 – Webinar: Methods and Methodologies, August 16, 2017, STAN. KAVALE

Cycle Flow Schematic – Simplified Method HRSG Spec

©Thermoflow Inc. 2017 – Webinar: Methods and Methodologies, August 16, 2017, STAN. KAVALE

Thermoflow Cycle Flow Schematic – Automatic Method HRSG Spec

©Thermoflow Inc. 2017 – Webinar: Methods and Methodologies, August 16, 2017, STAN. KAVALE

ť

What Happens in GTM?

(Note: Method not available in GTM - since design is now fixed)

Transfer the Simplified Method Plant to GTM, Inspect the HRSG Inputs Screen

(Previously had 3 economisers – program has further simplified the design to just 1 equivalent Economiser)

File View Options Tools Window New Session Control Loops Excel Link Compare Files Scripts Custom Variable List Help

Main Inputs	Plant Criteria	HRSG Inlet	ST Inputs	ST Process	HRSG Inputs	HRSG Process	Water Circuits	Cooling System	Environ ment	Gasifi cation	Desal ination		Site	Major I quipment F	Pipes, Pumps, E	conomics			Re-design in GT PRO	COMPUTE
	HRSG Mai	n Inputs	Ĩ		Hardward	9		Temper	ature Set Poir	nts	Ì	Assump	otions	Ĩ		Radiant Boiler	(ſ	Miscellaneou	s
Edit Hea	it Exchange	rs	View HRSG (ube plan]															
		17	Zone	15	14	12	Zone	11	10		Zone	7	c .	Б	Zone			Za	one O	
Path				13	14	13	HPEO	HPE2	HPE1	3	HPE3			HPB1	4	HPSO	HPS1	HPS2	HPS3	Path
2							$M_{\rm Mc}$	$-M_{\rm Me}$	-AAr		-^//-			ΙM.		-40-		Jnn-	-10 ₆	2
							0 rows	0 rows	0 rows		21 rows 56 tube/row			16 rows 56 tube/rov	v	0 rows	7 rows 56 tube/row	0 rows	0 rows	
1																				1
					1.05	1.00				LDC										
					LPE	<u> </u>				LPS D.D.										
0			'V/~		"VV"					1400										0
		56	3 rows tube/row		0 rows	0 rows				0 rows										
																			Duct Bu	rner
- -										Gas	s Flow 🧲									
Heat excl	angers an	d the prim	arv duct hu	irner mav h	e relocater	l with the n	nouse													

GTM Output

760 m

1.04 p 620 T 760 M

(Method= Simplified in GTPro)

"standard" type graphic results. PEACE Cost Report HRSG @ 6.326 MM EUR (as before)

Net Power 39284 kW LHV Net Heat Rate 12922 kJ/kWh LHV Net Efficiency 27.88 %

> 74.8 %N2 13.5 %O2 3.3 %CO2 7.5 %H2O

0.9 %Ar

GTM Output

(Method= Automatic in GTPro)

GT MASTER 26.1 skavale@email.cz

760 m

1.04 p 620 T 760 M Net Power 38962 kW LHV Net Heat Rate 13029 kJ/kWh LHV Net Efficiency 27.63 %

> 74.8 %N2 13.5 %O2 3.3 %CO2 7.5 %H2O

0.9 %Ar

Conclusion

The Simplified Method of HRSG Specification is significantly different in its approach to the other two methods of HRSG specification

The Calculation code is a preserved version of the earlier calculation method for HRSG specification/design Being a simpler & distinctly separate code, it may be a useful alternative to the other two HRSG specification methods in the event that these return error messages during calculation

The difference in design Method yields differences in HRSG heat transfer surface arrangements which may also yield subsequent differences in HRSG cost.

Further information is provided in the Help Menu, GTPro ch. 4.2.1 and GTPro ch.20

			HP Steam	IP Steam		Stack Temp
			t/hr	t/hr	MWe	degC
Method	HPE1 Setting	Intermediate Pressure Superheater Settings				
Simplified	HPE1 exit temperature = IP saturation temperature	IPS behind HP economiser	120.1	14.15	42.484	93
Automatic	HPE1 common with IPE	IPS1 behind HPE3, IPS2 behind HPB	120.1	12.16	41.956	100
Auto. Mimic of Simplified	HPE1 common with IPE	IPS behind HP economiser	120.1	12.16	41.955	100

Bun from Excel

Methodology (As Applicable to GTPro)

Can be specified at the New Session or Plant Criteria tab

Is available for both the "Setup Wizard and Start Visual Design" as well as the "Setup Wizard and Start Classic

Design" method of plant specification

Unavailable for the PDE and Standard Defaults Method of Plant Design.

File View Options	Window Excel Link Compare Files Scripts Custom Variable List Help
lavigator	New Design Existing File
Start Design	C File list
Diant Design	C Setup wizard & start classic design Most recent file - GTPR0.GTP
Flant Unterna	C Plant Design Expert
GT Selection	C Standard defaults
GT Inputs	Approximate Plant Output
ST-HRSG	C Up to 15 MW 📀 50 to 200 MW 🔽 Set automatically based on approximate plant output
HRSG Inputs	O 10 to 50 MW O Above 200 MW C Lower cost @ Intermediate C Higher efficiency
Water Circuits	General Plant Configuration
HRSG Layout	C GT Only
Cooling System	C GT & HRSG only (no ST)
ST Inputs	C GT, HRSG, and non-condensing ST
Environment	GT, HRSG, and condensing non-reheat ST Condenser
Other PEACE	C GT, HRSG, and condensing reheat ST
Economics	
Gasification	Include gasification (IGCC)
Desalination	🗖 Include pre-combustion CO2 capture
Compute	Include post-combustion CO2 capture
T 1011	Use combustion engines instead of turbines Heat Recovery Boiler
Text Uutput	Desalination System Gas Turbine
Graphics Output	None 🔽
PEACE Output	Methodology
arrving on	I. User's thermodynamic assumptions prevail over automatic hardware / engineering results
Multiple Designs	C 2. User's assumptions prevail in GT PRD, but hardware / engineering results prevail in GT MASTER
(MACRO)	

File View Options	Window Excel Link Compare Files Scripts Custom Variable List Help	
Navigator	Site Calculation Options Main Steam Piping Miscellaneou Losses Assumption:	s I
Start Design	Ambient temperature	Makeup
Plant Criteria	Altitude 0 m Climate Data	макеир
GT Selection	Ambient pressure 1.013 bar	Process
GT Inputs	Ambient relative humidity 60 %	Process
ST-HRSG	Ambient wet bulb temperature 10.82 C Data on green	Process
HRSG Inputs	Line frequency © 50 Hz © 60 Hz	Process
Water Circuits		Process
HRSG Layout	Site cooling water temperature	
Cooling System	Site allowable cooling water temperature rise	
ST Inputs	Cooling system type	
Environment	Water cooling with mechanical draft cooling tower	
Other PEACE	Water cooling with wet-dry mechanical cooling tower Water cooling with natural draft cooling tower	- (
Economics	Water cooling with dry cooling tower Dry air cooled condenser	
Gasification	Air cooled condenser with air precooled	
Desalination	Air cooled wet surface condenser	
C	No condenser, ST exhausts to process	/
Lompute		
Text Output	District heating system type	
Graphics Output	0. None	
PEACE Output	Methodology	
Carrying on	 1. User's thermodynamic assumptions prevail over automatic hardware / engineering results 	s
Multiple Designs	C 2. User's assumptions prevail in GT PRO, but hardware / engineering results prevail in GT I	MASTER
Run from Excel (ELINK)	C 3. Hardware / engineering details prevail over user's assumptions	

CINERMOTION INC. 2017 - WEDINAR: METNODS AND METNODOLOGIES, AUGUST 10, 2017, STAN. KAVALE

Methodology 1

(As Applicable to GTPro) Ref GTPro Help 2.4.5

"Users thermodynamic assumptions prevail over automatic hardware/engineering results."

This means that:

Method 1 is the default and results in the shortest computation times. The heat balance results in GT PRO and GT MASTER rely on the assumptions used to create the hardware. The hardware characteristics do not feed back into the heat balance automatically. For example, the pressure drops in the heat balance pipes are computed directly from assumptions made at the **Plant Criteria** topic, §4.3. Those assumptions are also used by PEACE to size the pipes. In GT MASTER, a resistance coefficient derived from the GT PRO heat balance is used to scale the pressure drops at off design. Thus, under identical flow conditions the pressure drops in GT PRO and GT MASTER will be identical, but are not computed using the hardware definition of the piping system shown in the PEACE outputs.

	Meth	odology	
PRO Defaults	1	2	3
Pipe dp	Udf	Udf	PHW
HRSG water-side dp	Udf	Udf	PHW
Stack loss	No	No	Yes
Rad q from GT/DB	No	No	Yes
Hydrostatic corr.	No	No	Yes
PEACE aux HX q to CT	No	No	Yes
MASTER Defaults	1	2	3
Pipe dp	RC	PHW	PHW
HRSG water-side dp CF	GTP	1	1
Stack loss	GTP	Yes	Yes
Rad q from GT/DB	GTP	Yes	Yes
Hydrostatic corr.	GTP	GTP	GTP
PEACE aux HX q to CT	GTP	GTP	GTP
Cooling water flow	Udf	PHW	PHW
f: User-defined, PHW: PEACE : Resistance coefficient	Hardware (if	licensed)	

Site	Calculation Options	Main Steam Piping Losses	Miscellaneous Assumptions
Heat balance uses	assumed pipe pressure lo	sses below	
) Heat balance uses	hardware-based pressure	drops from PEACE pipe result	s
. Pressure loss in HP	piping (DP/P)		3.25 🕺 🐒
2. Pressure loss in HP	T piping (DP/P)		3.75 %
3. Pressure loss in hot	RH piping (DP/P)		6.5 %
4. Pressure loss in colo	d RH piping (DP/P)		6.5 %
5. Pressure loss in IP p	oiping (DP/P)		6.5 %
6. Pressure loss in LP	piping (DP/P)		9 %
7. Pressure loss in LP1	T piping (DP/P)		9 %
3. Enthalpy drop in HF	° piping		2.5 kJ/k
3. Enthalpy drop in HF	PT piping		2.5 kJ/k
0. Enthalpy drop in ho	ot RH piping		2.5 kJ/k
1. Enthalpy drop in co	old RH piping		2.5 kJ/k
2. Enthalpy drop in IP	piping		2.5 kJ/k
3. Enthalpy drop in LF	° piping		2.5 kJ/k
4. Enthalpy drop in LF	^o T piping		2.5 kJ/k

Methodology 1

(As Applicable to GTPro Ref GTPro Help 2.4.5)

On leaving Plant Criteria Screen, note the below message advising of changes to selections made by the program to various aspects of the plant hardware

Thermoflow

From HRSG Inputs > Hardware Design Tab From Plant Criteria > Main Steam Piping Losses Tab From HRSG Inputs > Equipment Options (PEACE) Tab From HRSG Inputs > Miscellaneous Tab (item 13) From HRSG Inputs > Miscellaneous Tab (item 18)

Example: Methodology 1

760 m

1.04 p 620 T 760 M

+ GT PRO 28.1 skavale@email.cz

Thermoflow

Design : 2PL non reheat condensing ST, no GT, gas flow into HRSG @ 760 t/hr & 620 degC, ST inlet conditions @ stop valve = 69 bar & 538 deg C & 7bar @

LP admin Plant Criteria > Main Steam Piping Losses > Pressure Loss in HP Piping > 3.25%

2438 08-07-2017 16:46:19 file=C:\TFLOW26\MYFILES\GTPRO.GTP

Net Power 40770 kW LHV Net Heat Rate 12451 kJ/kWh LHV Net Efficiency 28.91 %

74.8 %N2 13.5 %O2 3.3 %CO2

7.5 %H2O 0.9 %Ar

Example: Methodology 1 (cntd)

Note that Hardware has been calculated and can be determined from the GTPro calculated outputs- but these details have not been fed back into the model .

Methodology 1 – GTM Input Screen

Main Inputs	Plant Criteria	HRSG Inlet	ST Inputs	ST Process	HRSG Inputs	HRSG Process	Water Circuits	Cooling System	Environ ment	Gasifi cation	Desal ination	
	Site		Ĩ	C	alculation Op	tions	Ĩ	<mark>Main Stea</mark>	m Piping L	osses	Ĩ	Misce
		Resistan	ce coefficient	Enthalp	y loss	Pres	sure drop ma	odel				
1. HPB to H	PT	0.85	18 m^-4	2.5	kJ/kg	<mark>Use resist</mark>	ance coeffici	ent	 Click to e 	dit pipe detail	<u>s</u>	
2. IPB to LP	т	2.86	3 m^-4	2.5	kJ/kg	Use resist	ance coeffici	ent	 Click to e 	dit pipe detail	<u>s</u>	
3. Hot rehea	at to HPT	0	m^-4	2.5	kJ/kg	Use resist	ance coeffici	ent	Click to e	dit pipe detail	<u>s</u>	
4. Cold rehe	at pipe	0	m^-4	2.5	kJ/kg	Use resist	ance coeffici	ent	Click to e	dit pipe detail	<u>s</u>	
5. LPB to LF	PT addition	0	m^-4	2.5	kJ/kg	Use resist	ance coeffici	ent	Click to e	dit pipe detail	<u>s</u>	
6. HP proce	ss	0	m^-4	2.5	kJ/kg	Use resist	ance coeffici	ent	Click to e	dit pipe detail	<u>s</u>	
7. IP proces	s	0	m^-4	2.5	kJ/kg	Use resist	ance coeffici	ent	 Click to e 	dit pipe detail	<u>s</u>	
8. HPT extra	action for proc	ess 0	m^-4	2.5	kJ/kg	Use resist	ance coeffici	ent	Click to e	dit pipe detail	<u>s</u>	
9. LPT extra	action for proc	ess O	m^-4	2.5	kJ/kg	Use resist	ance coeffici	ent	Click to e	dit pipe detail	<u>s</u>	

GTM- Methodology 1- Pressure Drop Model = Resistance Co-Efficient

IPS1

7.678 p

11.57 M

27/

230 T

HPE3

73.73 p

285 T 120.7 M IPS2

7.456 p

11.57 M

260 T

73.73 p

120.1 M

517

289 T

HE™

73.08 p

120.1 M

373 T

HPE2

74.71 p 245 T

120.7 M

p[bar], T[C], M[t/h], Steam Properties: IAPWS-IF97 2436 08-07-2017 17:07:48 file=C:\TFLOW26\MYFILES\GTMAS.GTM

LŢE

1.055 p 91 T

132.4 M

1.076 m*3/kg 227.2 m*3/s

©Thermoflow Inc. 2017 – Webinar: Methods and Methodologies, August 16, 2017, STAN. KAVALE

IPE2

7.755 p 165 T 134.8 M

40

7.755 p 169 T

13.95 M

618 T 760 M

2.512 m*3/kg 530.2 m*3/s

HPS3

71.24 p 540 T 120.1 M

590

72.25 p 456 T

120.1 M

580

Methodology 2

(As Applicable to GTPro) Ref GTPro Help 2.4.5

"Users assumptions prevail in GTPro, but hardware/engineering results prevail in GTMaster." This means that: Essentially there is no difference to Methodology 1 when in GTPro, however once the user enters GTMaster for off design calculations, the physical hardware parameters calculated/defined in GTPro now dominate in subsequent GTMaster calculations.

	Met	hodology	
Defaults	1	2	3
≥ dp	Udf	Udf	PHW
water-side dp	Udf	Udf	PHW
loss	No	No	Yes
q from GT/DB	No	No	Yes
rostatic corr.	No	No	Yes
ACE aux HX q to CT	No	No	Yes
IER Defaults	1	2	3
e dp	RC	PHW	PHW
SG water-side dp CF	GTP	1	1
ack loss	GTP	Yes	Yes
ad q from GT/DB	GTP	Yes	Yes
drostatic corr.	GTP	GTP	GTP
ACE aux HX q to CT	GTP	GTP	GTP
oling water flow	Udf	PHW	PHW
User-defined, PHW: PEACE H	Hardware (i	f license	ed)
isistance coefficient			

©Thermoflow Inc. 2017 – Webinar: Methods and Methodologies, August 16, 2017, STAN. KAVALE

Example: Methodology 2

760 m

1.04 p 620 T 760 M

← GT PRO 26.1 skavale@email.cz

Same design as per Methodology 1 Same GTPro outputs in Methodology 2 (since have same % dP defined as previously)

2438 08-07-2017 16:48:19 file=C:\TFLOW28\MYFILES\GTPRO.GTP

Net Power 40770 kW LHV Net Heat Rate 12451 kJ/kWh LHV Net Efficiency 28.91 %

> 74.8 %N2 13.5 %O2 3.3 %CO2

7.5 %H2O 0.9 %Ar

Methodology 2 – GTM Input Screen

Note the difference: in prior example with Methodology 1, the GTM input screen had Main Steam Piping Losses/Pressure Drop Model as "Use Resistance Co Efficient", with Methodology 2, this is now "Use PEACE hardware description. Model calculation is therefore based on the hardware characteristics calculated previously in GTPro. Also- could have "manually" switched on Methodology 2 in prior example by manually changing the pressure drop model in this screen.

p[bar], T[C], M[t/h], Steam Properties: IAPWS-IF97 2436 08-07-2017 17:20:54 file=C:\TFLOW26\MYFILES\GTMAS.GTM

Methodology 3

(As Applicable to GTPro Ref GTPro Help 2.4.5)

"Hardware/engineering details prevail over users assumptions."

Method 3 results in a heat balance most tightly coupled to the hardware characteristics of the designed plant. In this mode, the GT PRO and GT MASTER heat balances are very similar, and most consistent with the PEACE description of the plant. Outputs from both GT PRO and GT MASTER are consistent with hardware definitions of the components, rather than on the assumptions used to create those hardware definitions. Consider the procedure used with this method as it applies to the pipes described above. The assumed pressure drops in the main piping (§4.3) are applied in the initial GT PRO heat balance. Those initial heat balance results are used by PEACE to design the piping systems. The resulting piping system pressure drop characteristics are used in a second GT PRO heat balance calculation. The second (final) GT PRO result is based on pressure drops computed using the hardware characteristics of the piping system shown in the PEACE outputs. In GT MASTER, changing the piping system design will affect the computed pressure drops (and plant cost) automatically.

				same defaults	Site	Calculation Options	Main Steam Piping Losses	Miscellaneous Assumptions
	Met	hodology		in GTPro M3 as in M1	Heat balance use	s assumed pipe pressure lo	sses below	
GT PRO Defaults	1	2	3		C Heat balance use	s hardware-based pressure	drops from PEACE pipe res	sults
1. Pipe dp	Udf	Udf	PHW					
HRSG water-side dp	Udf	Udf	PHW		1.0			
Stack loss	No	No	Yes		1. Pressure loss in Hh	² piping (DP/P)		3.20 %
 Rad q from GT/DB 	No	No	Yes		2. Pressure loss in HF	PT piping (DP/P)		3.75 %
Hydrostatic corr.	No	No	Yes		3. Pressure loss in ho	t RH piping (DP/P)		6.5 %
6. PEACE aux HX q to CT	No	No	Yes		4. Pressure loss in co	ld RH piping (DP/P)		6.5 %
GT MASTER Defaults	1	2	3		5. Pressure loss in IP	piping (DP/P)		6.5 %
1. Pipe dp	RC	PHW	PHW		6. Pressure loss in LF	piping (DP/P)		9 %
2. HRSG water-side dp CF	GTP	1	1		7. Pressure loss in LF	T piping (DP/P)		9 %
3. Stack loss	GIP	res	ies					
4. Rad q from GT/DB	GIP	IES	IES		8. Enthalpy drop in H	P piping		2.5 kJ.
5. Hydrostatic corr. 6. PFACE aux HX g to CT	GTP	GTP	GTP		9. Enthalpy drop in H	PT piping		2.5 kJ.
7. Cooling water flow	Udf	PHW	PHW		10. Enthalpy drop in h	ot RH piping		2.5 kJ.
Udf: User-defined, PHW: PEACE	Hardware (i	f license	ed)		11. Enthalpy drop in c	old RH piping		2.5 kJ.
RC: Resistance coefficient					12. Enthalpy drop in If	^o piping		2.5 kJ.
					13. Enthalpy drop in L	P piping		2.5 kJ.
					14. Enthalpy drop in L	PT piping		2.5 kJ.

©Thermoflow Inc. 2017 - Webinar: Methods and Methodologies, August 16, 2017, STAN. KAVALE

Methodology 3

(As Applicable to GTPro Ref GTPro Help 2.4.5)

On leaving Plant Criteria Screen, note the below message advising of changes to selections made by the program to various aspects of the plant hardware

Thermoflow

From HRSG Inputs > Hardware Design Tab
From Plant Criteria > Main Steam Piping Losses Tab
From HRSG Inputs > Equipment Options (PEACE) Tab
From HRSG Inputs > Miscellaneous Tab (item 13)
From HRSG Inputs > Miscellaneous Tab (item 18)
From GT Inputs > Inlet Heating & Cooling > Coil Tab

Example: Methodology 3

Thermoflow

Methodology 3 – GTM Input Screen

Note the difference in Resistance Co- Efficients between the Methodology 2 & Methodology 3 GTM Input screens... reason = ???

Site	Site			Calculation Op	ptions Main Steam Piping Losses			Misce			
F	Resistance c	oefficient:	Entha	lpy loss	Pressure drop n	nodel					
1. HPB to HPT	0.4766	m^-4	2.5	kJ/kg	Use PEACE hardware	description 💌 Click to ed	<u>lit pipe details</u>		P	Y	
2. IPB to LPT	0.8335	m^-4	2.5	kJ/kg	Use PEACE hardware	description 💌 Click to ed	lit pipe details		Pumps	Pipes	Tanks
3. Hot reheat to HPT	0		2.5	 kJ/kg	Use PEACE hardware	description 🚽 Click to ed	lit pipe details		Pipe pressure drop model Use PEACE hardware description	Pipe schedule Image: Transmission of the schedule	 Pipe Re-sizing Me Specify hardware
4. Cold reheat pipe	0		2.5	 kJ/kg	Use PEACE hardware	description 🚽 Click to ed	lit pipe details		Pipe material P-22	Fitting pressure class (for those denoted b 900 psig / 60 barg	y (*) below) C Specify thermody
5. LPB to LPT addition	0		2.5	 kJ/kg	Use PEACE hardware	description 🚽 Click to ed	lit pipe details		Pipe Group HPR to HPT (HPD)	1 Citing and the	
6. HP process	0		2.5	 kJ/kg	Use resistance coeffic	cient 🚽 Click to ed	lit pipe details		IPB to LPT (IP0) Main Circulating Water (CW0) Main Auxiliary CW (CW1)	2. Sizing temperat	ле
7. IP process	0		2.5	 kJ/kg	Use PEACE hardware	description 💌 Click to ed	lit pipe details		CW for ST+Generator Lube Oil Coc Condensate (FW1) Makeun from Water Treatment Sus	ler (CW7) 3. Sizing flow 4. Sizing pressure	drop (DP/Psizing)
8. HPT extraction for process	0	 m^-4	2.5	kJ/kg	Use resistance coeffic	sient 🚽 Click to ed	lit pipe details		Feedwater to Boiler (FW3) Condenser Air Removal (CAR0) Baw Water (BW0)	5. Physical length 6. Number of pipe	of pipe run s in plant
9. LPT extraction for process	0		2.5	 	Use resistance coeffic	cient 🚽 Click to ed	lit pipe details		Service Water (SW0) ST+Generator Lube Oil (OIL3) Service Air (SERVA)	7. Nominal diamet	er
	L		L		,				Boiler & Equipment Drain Piping (BE Boiler Blowdown Piping (BLDN)	DR) 8. Wall thickness 9. Inside diameter	
									Main Fire Protection (FP0) Miscellaneous Fire Protection (FP1)	10. Outside diamet	er th of nine run
										12. Number short S	0 degrees elbows
										13. Number long 9	J degrees elbows

Number sweeping 90 degrees elbows
 Number short 45/60 degrees elbows
 Number long 45/60 degrees elbows
 Number full-size tees with flow through run

18. Number full-size tees with flow through branch

p[bar], T[C], M[t/h], Steam Properties: IAPWS-IF97 2436 08-07-2017 17:40:46 file=C:\TFLOW26\MYFILES\GTMAS.GTM

Methodology – Conclusions

Methodology 1- Most likely use when the design of a new plant is required.

Methodology 3- Appropriate when are replicating an existing plant design and many of the physical parameters for pipe runs and heat transfer areas can be replicated in GTPro

	Method 1	Method 2	Method 3
GT PRO Defaults			
Water-side pressure drop in HRSG heat exchangers	User-defined	User-defined	Hardware
Water-side pressure drop correction factor in HRSG heat exchangers	Computed	Computed	1
Switch to include radiation heat transfer from GT or DB exhaust to downstream heat exchanger	Off	Off	On
Pressure drop in heat balance pipes	User-defined	User-defined	Hardware
Switch to estimate buoyancy and pressure losses in HRSG stack Off		Off	On
Switch to include hydrostatic correction for HRSG drum elevation Off			On
Switch to add heat rejected from auxiliary heat exchangers to the main plant cooling tower thereby Off increasing its size		Off	On
GT MASTER Defaults			
HRSG heat exchanger water-side pressure drop correction factor	From GT PRO	1	1
HRSG heat exchanger gas-side pressure drop correction factor	From GT PRO	From GT PRO	From GT PRO
HRSG heat exchanger gas-side convective h.t.c. correction factors	From GT PRO	From GT PRO	From GT PRO
Switch to include radiation heat transfer from GT or DB exhaust to downstream heat exchanger	From GT PRO	On	On
Switch to include hydrostatic correction for drum elevation	From GT PRO	From GT PRO	From GT PRO
Calculation of pressure drop in heat balance pipes	Resistance Coefficient	PCE Hardware	PCE Hardware
Method to determine cooling water flow rate	User-defined	PCE Hardware	PCE Hardware
Switch to estimate buoyancy and pressure losses in HRSG stack	From GT PRO	On	On
Switch to add heat rejected from auxiliary heat exchangers to the main plant cooling tower thereby increasing its size	From GT PRO	From GT PRO	From GT PRO

Methodology in STP/M

- Define at the New Session window
- In contrast to GTP, have fewer parameters impacted

	Methodology					
STEAM PRO Defaults 1. Pipe dp 2. Conv. HX water dp	1 Udf Udf	2 Udf Udf	3 PHW PHW			
STEAM MASTER Defaults 1. Pipe dp 2. Conv. HX water dp C 3. Cooling water flow	1 RC FSTP Udf	2 PHW 1 PHW	3 PHW 1 PHW			
Udf: User-defined PHW: PEACE Hardware (if licensed) RC: Resistance coefficient						

Thermoflow

Resistance Coefficient vs Actual Hardware (GTM)

3.3.1 Pipe Pressure Drop Calculation - Resistance Coefficient Method				
This finds the off-design pressure drop from the equation:				
	$\Delta P = R v m^2$			
where				
$\Delta P = pipe pressure loss$				
R = pipe resistance coefficient				
v = average steam specific volume				
<i>m</i> = steam mass flow rate				

3.3.2 Pipe Pressure Drop Calculation - PEACE Hardware Method

This method is only available in combined GTM/PCE mode. It uses the actual pipe hardware description, such as diameter, length, number of fittings of each type, and a wall roughness commensurate with the pipe's material. It computes friction factor as a function of Reynolds Number and wall roughness, to find pressure drop from the equation:

$$\Delta P = f\left\{ (L + \Sigma L_{\rho})/D \right\} \frac{1}{2} \rho V^2$$

(3-2)

where

 ΔP = pipe pressure loss

f = pipe friction factor, a function of Reynolds Number and pipe wall roughness

L = pipe length

 ΣL_e = sum of equivalent lengths for all fittings (elbows, valves, etc.) in the pipe

D = pipe diameter

 ρ = steam or water density, averaged between pipe inlet and exit states

V= steam or water velocity, averaged between pipe inlet and exit states

....further to the NEW DESIGN topic (continued)....

Setup Wizard & Start Visual Design – this is the recommended method of starting a new design. Ref Help > GTPro > Ch.2 & Ch.3. This start method is intended for less experienced users and provides more internal mechanisms to ensure that a sound thermodynamic model results.

Setup Wizard & Start Classic Design – this is the alternative method of starting a new design. Ref Help > GTPro > Ch.2 & Ch.3. This start method has more flexibility in the design and so requires more experience on the part of the user to ensure that a sound design results

Changing the Cycle Type

File View Options	s Window Excel Link Compare Files Scripts Custom Variable List Help			frequired the design (anap defined in
Navigator	Site Calculation Options Main Steam Piping Miscellaru Losses Assumption	sous Regional Costs Site Characteristics Building	s Notes Change Cycle Type	Visual Method say) can be changed at the
Start Design	Ambient temperature 15 C	Makeup water source pressure 3.447 bar		Plant Critoria Scroon/Chango Cyclo Typo
Plant Criteria	Altitude 0 m Show ASHRAE Climate Data	Makeup water source temperature 15 C	l l l l l l l l l l l l l l l l l l l	
GT Selection	Ambient pressure 1.013 bar	Process condensate return pressure 3.447 bar		Tab. This then opens the Classic Method
GT Inputs	Ambient relative humidity 60 % Import Plant Criteria	Process condensate return temperature 82.22 C	t	type options as shown below.
ST-HRSG	Ambient wet bulb temperature 10.82 C Data on green PEACE Tabs 5-7	Process water return pressure 3447 bar		·····
HRSG Inputs	Line frequency	Process water return temperature 15 C		
Water Circuits		Process water return percentage 100 %	Site Calculation Options Main Stee	am Piping Miscellaneous Regional Costs Site Characteristics Bi
HRSG Layout	Site cloaing water temperature		Caution: This tab allows experienced GT PBD users to change s	ses Assumptions Assumptions Assumptions Assumptions Assumptions Assumptions Assumptions
Cooling System	Cooling system type	Exhaust ste am	casual users. To preserve user's inputs, GT PRO will NOT autom to casefully examine and/or edit inputs to make sure than are con	atically initialize inputs when a new steam system type is selected. It is user's responsibility
ST Inputs	Once through open loop water cooling Water cooling with mechanical draft cooling tower			imensurate with the new steam system type.
	Water cooling with wet-dry mechanical cooling tower	Water Box	Tupe 6 Dual pressure CC extraction/induction condensing to	rbine
Economics	Water cooling with dry cooling tower			Charge surget stopp autop has with data below
Gasification	Air cooled condenser with air precooled Air cooled condenser with continuous air saturation		ST connected to intermediate pressure boiler (IPB)	Change current steam system type with data below
Desalination	Air cooled wet surface condenser Direct contact condenser with dry CT (Heller Sustem)			
Compute	No condenser, ST exhausts to process		Steam System Type	
Tout Output	District beating system tupe		O 0. Simple cycle gas turbine(s)	Steam Turbine
Graphics Dutput	0. None	CW in Condensate	O 1. Single pressure HRSG for process/STIG only	Condenser
PEACE Output		Condensate	O 2. Dual pressure HRSG for process/STIG only	
Carruing on			O 3. Single pressure CC, non-condensing turbine	
Multiple Designs	C 2. User's thermodynamic assumptions prevail over automatic hardware / engineering results prevail in GT PBD, but hardware / engineering results prevail in GT	T MASTER	O 4. Single pressure CC, extraction condensing turbine	
(MACRO) Bun from Excel	C 3. Hardware / engineering details prevail over user's assumptions		5. Dual pressure CC, non-condensing turbine	
(ELINK)			6. Dual pressure CC, extraction/induction condensing turb	
			C 7. Dual pressure reheat CC, extraction/induction condensi	ing turbine
In this ca	se the design was initially defined by th	e Visual Method (2 PL, non	C 8. Triple pressure CC, extraction/induction condensing tur	bine Gas Turbine
reheat).	The design was then changed to a Type	9 (3 PL. non reheat). Note	9. Triple pressure reheat CC, extraction/induction condens	sing turbine ST connected to intermediate pressure boiler (IPB)
the cauti	onary highlighted test. Once the new d	esign is chosen confirm	C 10. Dual pressure reheat CC, reheat before IP	ST connected to low pressure boiler (LPB)
			C 11. Triple pressure reheat CC, reheat before IP	Above sketch is for illustration only. Steam turbine may have bleeds
the new	design by clicking on the "Change Curre	nt Steam System Type		and additions. Hit is a near exchanger sequence may be modified. Various process streams may be established later.
With Dat	a Below" in order for the changes to tal	ke effect.	Include Reverse Osmosis (RO)	

Q&ATime....

©Thermoflow Inc. 2017 – Webinar: Methods and Methodologies, August 16, STAN. KAVALE